South East Asian J. Math. & Math. Sc. Vol.6 No.1(2007), pp.115–118

A STUDY ON G-SETS

S.M.A. Zaidi, M. Irfan, Shabbir Khan and Gulam Muhiuddin

Department of Mathematics
Aligarh Muslim University, Aligarh-202002, India
E-mail: zaidimath@rediffmail.com, mohammad_irfanamu@yahoo.com,
skhanamu@rediffmail.com, gmchishty@math.com

(Received: February 15, 2006)

Abstract. This paper concerns the study of G-sets and their basic properties.

Keywords and Phrases: G-sets, groups 2000 AMS Subject Classification: 20C05

1. Introduction

The idea of groups with operators has been discussed in [2]. This idea leads to a generalization in the form of sets with operators. In the group theory this concept is known as G-sets. In this paper, we obtain some basic properties of G-sets.

2. Preliminaries

Definition 2.1. Let G be a group, X be a set and $\phi: G \times X \to X$ be a mapping. Then, the pair (X, ϕ) is called a G-set (or a set with operator G), if for all $g_1, g_2 \in G$ and $x \in X$, the following conditions are satisfied:

- (i) $\phi(g_1g_2, x) = \phi(g_1, \phi(g_2, x)),$
- (ii) $\phi(e, x) = x$,

where e is the identity of G.

For the sake of convenience, one can denote $\phi(g, x)$ as gx. Under this notation, above conditions become

- (i) $(g_1g_2)x = g_1(g_2x)$,
- (ii) ex = x.

3. Results on G-Sets

Theorem 3.1. Every normal subgroup H of a group G is a G-set under the mapping $\phi: G \times H \to H$ defined by $\phi(a,h) = aha^{-1}$ for every $a \in G$ and $h \in H$.